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1. Introduction
Flow separation and reattachment are very common features in most flows of
engineering interest, and phenomena associated with separation very often
dominate the flow fields in that they can drastically alter the efficiency of the
said engineering devices. A classical example is found in external flows. There
is a dramatic increase in form drag associated with flow separation over a
streamlined or bluff body with graver consequence for the former since form
drag without flow separation only constitutes a relatively much smaller
component of overall drag. However, many engineering devices operate at their
highest efficiency with the flow close to separation. It is this occurrence which
has led to intensive research in this area.

The principal objective of the present research effort is to employ and
compare the various commonly used general turbulence models that can still
predict the effects of flow curvature on the turbulence structure of the
associated boundary layer. One important outcome of the present work is the
ability to predict the separation and reattachment of turbulent flows inside an
axisymmetric diffuser with a curved surface centre-body. Such findings can be
naturally extended to a wide range of flows such as those over wings of
aeroplanes and cascades of airfoils where flow separation and attachment occur
over surfaces with geometrical curvature.

2. Mathematical formulations
2.1 Governing equation
In tensor notation, the incompressible, two-dimensional, steady state, time-
averaged Navier-Stokes equations of motion and continuity of fluid are given
below
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(2)

where the symbols used take on their usual meanings.

2.2 Turbulence models
Equations (1) and (2) by themselves are not closed because of the turbulent
kinetic energy term (k) and turbulent viscosity term (νt). To enable the closure
of the time-averaged Navier-Stokes equations, one has to find effective and
suitable equations relating k and νt . Shown below are the various models
employed in the present work.

2.2.1 One-equation turbulence model (Wolfshtein model). In the standard one-
equation model, the kinetic energy k can be obtained from the standard
modelled transport equation:

(3)

Here νt is obtained from the Wolfshtein model (Wolfshtein, 1969):

(4)

(5)

2.2.2 Two-equation k-ε turbulence models. There are four different two-equation
k-ε turbulence models used in the present study. All these models are briefly
listed below. The interested reader should refer to the respective references
given for details.

2.2.2.1 High-Reynolds number k-ε turbulence model. In the region away from
the wall (i.e. y+ > 60), the standard high-Reynolds number version of the k-ε
model, originally devised by Launder and Spalding (1972), was adopted. The
turbulent kinetic energy is still governed by equation (3), as in the one-equation
model, except that the rate of dissipation (ε) in that equation is now obtained
from a modelled transport equation:

(6)

with

(7)

The purpose for the form of the ε equation used is that it has been tested
extensively in computations of shear-free flows and wall flows, and has proven
to be rather successful (Launder and Spalding, 1972; 1974; Launder et al., 1972).
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This high-Reynolds number turbulence model, however, cannot be applied to
the near wall region where the viscosity is dominant. In this work, either the one
equation turbulence model (i.e. Wolfshtein’s model) or the wall function method
is used to determine the flow variables in the near wall region.

2.2.2.2 Low-Reynolds number k-ε turbulence model. In the near wall region, a
more general low-Reynolds number turbulent model is required, in which the
turbulent viscosity can be determined purely through the transport equations.
In the present study, Launder-Sharma’s low-Reynolds number k-ε model
(Launder and Sharma, 1974) is adopted, which is given as

(8)

(9)

where

(10)
2.2.2.3 RNG k-ε turbulence model. Like the high Reynolds number k-ε
turbulence model, the RNG (renormalization group) k-ε model uses the same
turbulent kinetic energy equation (equation (3)), and employs an additional
source/sink term in the ε equation with various model coefficients. The form of
the ε equation of the RNG k-ε model is as follows (Yakhot et al., 1992):

(11)

2.2.2.4 Anisotropic model. The form of this model is fairly identical to that of
the high Reynolds number turbulence model. The difference lies in the value of
constants Cε1 and Cε2 which are obtained as follows:

(12)

(13)

In the present study, the eddy-viscosity model according to Launder and Suga
(1993) is employed.

3. Numerical solution
3.1 Discretisation of governing equations
The governing equations may be summarised as follows

(14)
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where φ is a general dependent variable which may stand for Ui, k and ε; Γφ is
the diffusive coefficient, and Sφ represents all the source terms which cannot be
expressed as either convection or diffusion. Using control volume methods,
equation (14) is integrated over a control volume surrounding P, as shown in
Figure 1,

(15)

Applying Gauss’ theorem, the volume integral on the left-hand side may 
be expressed in terms of surface integral; equation (15) can thus be rewritten
as:

(16)

where the subscripts e, w, n and s indicate the east, west, north and south
faces of the control volume, respectively. With the approximations for
convection, diffusion and the source terms, Equation (16) may be rearranged
in a way such as:

(17)

Equation (17) is then solved by a “line-by-line” iterative method. The present
study adopts the SIMPLE (Patankar and Spalding, 1972) algorithm to calculate
the pressure field.

The iterative solution may be generally considered to have converged when
the sum of the normalised absolute residuals across all nodes is less than a
prescribed small value δ,

(18)

In our computations, we set δ to be 10–4.

Figure 1.
Two-dimensional
control volume
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3.2 Grids generation
In order to produce a smooth distribution of grid lines, (ξ, η), in the flow domain,
the Poisson equations representing these grid lines are solved iteratively.

(19)

(20)

Here ξ = ξ(x, y) and η = η(x, y), where ξ is in the general streamwise direction
and η is in the direction as nearly orthogonal to ξ as possible. After initial
distribution of the grid lines, further refinement is carried out around the sharp
corners of the wall; along each (constant) ξ line originating from the wall, the  η
lines are redistributed according to ηj = η1q

j–1 where starting from the wall, q
is a prescribed ratio of the consecutive η grid line spacing. In doing so, there are
much more resultant grid lines close to the upper and lower walls for better
resolution of the flow features.

4. Results and discussion
The numerical solutions are carried out for an axisymmetric diffuser with a
back-facing curved surface centre-body, where experimental data are available
from references Xu (1995a; 1995b). In the experiments, the hot wire was used to
measure the velocity and turbulent intensity distribution at various locations in
the axisymmetric diffuser. In order to determine the separation and
reattachment points on the centre-body, an oil film flow visualisation technique
was employed. The results obtained were confirmed independently following
the use of tuft to locate the separation and reattachment points to well within
±10%H. (Here H is the height of the back-facing curved step, 16.875mm in
height, which is also used to normalise all the lengths in the calculations (see
Figure 2). This, in turn, is in general agreement with the overall measured
velocity distributions. It should be pointed out that the experimental flow
Reynolds number, based on H and incoming free stream velocity, is 2.0 × 104.

In this work, our focus is mainly on the experimentally obtained separation
and reattachment locations for direct comparison to the different turbulence

Figure 2.
Geometry and mesh
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models used in the numerical simulations. The interested reader should refer to
Xu (1995a; 1995b) for experimental details.

4.1 Grid independence
The grid independence of the numerical results is examined before the main
calculations are carried out. The test case selected using the high-Reynolds k-ε
turbulence model with wall function model is repeatedly calculated with seven
kinds of grids from coarse to fine. The separation and reattachment locations of
streamlines denoted by XS /H and XR/H respectively, are computed and
compared for different grid sizes. From Table I, a convergence to grid
independence is fairly obvious. It is reckoned that the result from a 200 × 70 grid
is sufficiently accurate for prediction purposes because the separation and
reattachment locations for the 200 × 70 grid differ from the 300 × 70 grid by less
than 2.4 and 1.3 per cent respectively. The former uses much less CPU time than
the latter by about a factor of 0.45.

From the above, further computations pertaining to different turbulence
models are carried out for the typical grid size of 200 × 70, which is shown in
Figure 2. It may be noted that more grid lines are distributed near to the solid
wall and back-facing curved surface region to reflect the expected rapid
changes or much sharper velocity gradients of the flow field.

4.2 Results of high-Reynolds k-ε + wall function model
In the first calculation, the high-Reynolds number k-ε turbulence model is used
to deal with the turbulent flow in the main flow region, and the wall function
method to treat the flow near the wall where the assumption for the application
of the high-Reynolds number turbulence model is no longer valid.

The geometry of the grids is shown in Figure 2. The upper and lower edges
correspond to the solid wall; the left is the flow entry and the right is the exit
region. The inlet conditions are taken from velocity measurements (Xu 1995a;
1995b). The under-relaxation iteration technique is adopted to increase
numerical stability with relaxation factors αu = αv = αk = αε = 0.5 and αp = 0.7.

The final convergent result is obtained after 3,270 iterations. Figure 3 shows
the locally enlarged streamline distributions around the backward curved
surface. It can be clearly observed that there is a recirculation zone developed

Mesh XS/H XR/H Relative CPU time

80 × 40 1.459 6.619 0.192
100 × 50 1.411 6.215 0.325
150 × 60 1.363 6.616 0.577
175 × 70 1.332 6.658 0.824
200 × 70 1.332 6.598 1.000
250 × 70 1.293 6.583 1.614
300 × 70 1.301 6.512 2.200

Table I.
Grid independent test
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just behind the curved surface. The separation starts at the curved surface and
reattachment occurs downstream. (This is sometimes referred to as separation
bubble.) The separation and reattachment positions are listed in Table II
together with the experiments and other turbulence models (see below) for the
purpose of comparison.

For the purpose of completeness, Figures 4 and 5 give the local enlarged
velocity vectors and pressure contours around back-facing curved surface
inside the diffuser. 

4.3 Results of high-Reynolds k-ε + one-equation model
This is sometimes called the zonal modelling. The computational domain is
divided into two regions. The high-Reynolds number k-ε model is used in the
main flow region, and one-equation turbulence model (Wolfshtein’s model) is
adopted in the region near the wall.

The same distribution of ξ and η lines as in Section 4.1 is used for this model.
On the upper wall, the wall function method is still being used instead of

Figure 3.
Streamlines, high-

Reynolds k-ε + wall
function model
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Model XS/H XR/H Relative CPU time

Test 1.78 7.50-8.00 –
High Re k-ε + wall function 1.332 6.598 1.0
High Re k-ε + one equation 1.638 7.991 4.0 (10.0)a
Low Re k-ε 1.332 7.170 12.0 (28.0)a
RNG k-ε 1.031 10.308 1.4
Anisotropic k-ε (Launder) 1.415 6.865 19.0

Note:
a The relative CPU time in brackets refers to the full employment of respective models on both

the upper and lower walls

Table II.
Separation and

reattachment positions
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Wolfshtein’s model, since the main interest is in the flow region around and near
the central body. (This approach is taken primarily to reduce CPU time required.
If Wolfshtein’s model is applied to both the upper and lower walls, the CPU time
required is about doubled but with almost the same level of numerical accuracy
for the prediction of the separation and reattachment positions on the lower
wall. A closer examination of the resultant flow field reveals that there is no
separation on the upper wall, and may further suggest that the flow near the
upper wall in the present geometry has little or no influence on the flow
separation or reattachment on the lower wall.) The boundary conditions and
the under-relaxation factors used are the same as before.

The final convergent result is obtained after 16,485 iterations. The general
patterns of streamline, velocity vectors and pressure contours around the back-
facing curved surface are about the same as the ones obtained by high-Reynolds
number k-ε model. Therefore, they are not shown here. The possibly notable
differences are the separation and reattachment positions which are also listed
in Table II for comparison.

Figure 5.
Pressure, high-Reynolds
k-ε + wall function
model
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Velocity, high-Reynolds
k-ε + wall function
model
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4.4 Results of low-Reynolds k-ε model
In this section, the low-Reynolds number Launder-Sharma turbulence model is
used to calculate the turbulent flow. In order to reduce CPU time, the high
Reynolds number k-ε and wall function model is used to deal with the flow near
the upper wall region as our main interest is the flow around the centre-body.
This is similar to the approach taken in Section 4.3. However, if the low-
Reynolds number Launder-Sharma turbulence model is applied to both the
upper and lower walls, the separation and reattachment positions on the lower
centre body differ by less than 1.0 per cent which supports the notion of
minimal influence of the upper wall on the flow in the lower wall for the present
geometry. The CPU time taken, on the other hand, has increased by more than
100 per cent)

The under-relaxation factors for u, v, p, k and ε are 0.2, 0.2, 0.1, 0.2 and 0.2
respectively. The final convergent result is obtained after more than 46,000
iterations. Again, since there is no salient difference in the general distribution
of the streamlines, velocity vectors and pressure contours between this
turbulence model and the high Reynolds number k-ε and wall function
calculation, the results of the former are not shown here except for the
separation and reattachment positions which are indicated in Table II for
detailed comparison.

4.5 Results of RNG k-ε model
The RNG k-ε turbulence model is applied to calculate the turbulent flow in this
section. The mesh used in this model is exactly the same as the one used in the
low Reynolds number k-ε turbulence model.

The numerical stability of this model is quite good. Therefore, the under-
relaxation factors for u, v, p, k and ε are chosen as 0.5, 0.5, 0.7, 0.5 and 0.5
respectively. The final convergent result is obtained after more than 4,512
iterations. The general distributions of the streamline patterns, velocity vectors
and pressure contours do not differ significantly from the corresponding plots
in Figures 3, 4 and 5 respectively, except for a visibly bigger size separation
bubble; the former results are not presented here. On the other hand, to account
for the observed difference in the separation bubble size, the separation and
reattachment positions are listed in Table II. From Table II, it is clear that this
model predicts a very early separation and a delayed reattachment when
compared to the experiments and the other turbulence models.

4.6 Results of anisotropic k-ε model
Finally, the anisotropic k-ε turbulence model with Launder and Suga’s eddy-
viscosity equation (Launder and Suga, 1993) is used to calculate the turbulent
flow. With the presence of the curved surface, the flow in the diffuser is
supposedly a case of strong anisotropic turbulent flow. For the better prediction
of such flow, one may want to consider the anisotropic feature of the flow.

The under-relaxation factors for u, v, p, k and ε are 0.1, 0.1, 0.1, 0.1 and 0.1,
respectively. The separation and reattachment positions are listed in Table II. It
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can be seen from the table that the model does not give a significantly better
prediction compared to the experiments although one may expect otherwise
since flow anisotropy has been accounted for in this turbulence model.
However, judging from the general distributions of the streamline patterns,
velocity vectors and pressure contours which only indicate fairly minor
differences from the corresponding plots computed using the other turbulence
models (for example, see Figures 3-5) and thus the said results are not presented
here, it may be suggested that the flow geometry selected in this test case may
not possess sufficiently strong “anisotropy” to warrant the use of the
anisotropic k-ε turbulence model with its associated high computational cost.

From Table II, there are apparently significant differences among the various
turbulent models in predicting the locations of the separation and reattachment
points. Perhaps this is not too surprising in view of the fact that an accurate
prediction hinges primarily on the model’s ability to resolve the interaction
between the surface wall curvature and the state of turbulence. In the present
study, we have merely adopted the commonly employed general turbulence
models available in the literature. It may be noted too that Lien and Leschziner
(1994a; 1994b) employed several turbulence models (some of which are identical
to this work) to compute the reattachment position of a 2D turbulent flow over
a much simpler flat surface backward facing step for a similar range of
Reynolds number (based on free stream velocity and step height) for
comparison to experiments. Of course, in their investigations, flow separation
occurs right at the back-facing step. Despite this employment of the general
turbulence models, results from Figures 3-5 and Table II still clearly suggest
that the high Reynolds number k-ε + Wolfshtein’s one-equation turbulence
model presents the best prediction for separation and reattachment positions
for the present flow configuration. All the calculations, however, predict an
earlier separation position than the experiment although the said result
obtained with the high-Reynolds number k-ε + Wolfshtein’s one-equation
turbulence model is well within the experimental uncertainty of about 10 per
cent.

5. Conclusion
Turbulent flows inside an axisymmetric diffuser are numerically studied in the
present study by using five different turbulent models: high-Reynolds number
k-ε + wall function model; high-Reynolds number k-ε + one-equation model;
low-Reynolds number k-ε model; RNG turbulence model; and anisotropic
turbulence model. From the numerical calculations and comparisons between
numerical solutions and experimental measurements, the following conclusions
can be drawn.

• High-Reynolds number k-ε + wall function model uses the least CPU
time.

• High-Reynolds number k-ε + one-equation model gives the best numerical
prediction for the separation and reattachment positions. It also requires
reasonable CPU time.
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• High-Reynolds number k-ε + wall function model, low-Reynolds number
k-ε Launder-Sharma’s model and anisotropic model greatly under-
predict the separation position by at least 25 per cent.

• Low-Reynolds number k-ε Launder-Sharma’s model uses rather
substantial CPU time but does not lead to significant improvement in the
numerical predictions.

• RNG turbulence model predicts a bigger separation bubble in the
present numerical study. It gives a very early separation point and
delayed reattachment point.

• Among the five models, the anisotropic turbulence model uses the
longest CPU time. However, this model does not present the best
prediction for the separation and reattachment positions.

• All the models predict an earlier separation than the experiment.
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